
http://www.a-pdf.com/?tr-demo

Learn Windows PowerShell in a Month of Lunches
Third Edition

Learn Windows PowerShell
in a Month of Lunches

THIRD EDITION

DON JONES

JEFFERY HICKS

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Helen Stergius
20 Baldwin Road Project editor: Janet Vail
PO Box 761 Copyeditor: Sharon Wilkey
Shelter Island, NY 11964 Proofreader: Alyson Brener

Technical proofreader: James Berkenbile
Typesetter: Dottie Marsico

Cover designer: Leslie Haimes

ISBN 9781617294167
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

http://www.manning.com

v

brief contents
1 ■ Before you begin 1
2 ■ Meet PowerShell 9
3 ■ Using the help system 20
4 ■ Running commands 37
5 ■ Working with providers 51
6 ■ The pipeline: connecting commands 63
7 ■ Adding commands 76
8 ■ Objects: data by another name 89
9 ■ The pipeline, deeper 101

10 ■ Formatting—and why it’s done on the right 123
11 ■ Filtering and comparisons 139
12 ■ A practical interlude 148
13 ■ Remote control: one-to-one, and one-to-many 153
14 ■ Using Windows Management Instrumentation and CIM 171
15 ■ Multitasking with background jobs 185
16 ■ Working with many objects, one at a time 200
17 ■ Security alert! 216
18 ■ Variables: a place to store your stuff 228
19 ■ Input and output 244
20 ■ Sessions: remote control with less work 253
21 ■ You call this scripting? 263
22 ■ Improving your parameterized script 276

BRIEF CONTENTSvi

23 ■ Advanced remoting configuration 286
24 ■ Using regular expressions to parse text files 296
25 ■ Additional random tips, tricks, and techniques 303
26 ■ Using someone else’s script 316
27 ■ Never the end 325
28 ■ PowerShell cheat sheet 328

vii

contents
preface xvii
acknowledgments xix
about this book xx
about the authors xxii

1 Before you begin 1
1.1 Why you can’t afford to ignore PowerShell 1

Life without PowerShell 2 ■ Life with PowerShell 2

1.2 And now, it’s just “PowerShell” 3
1.3 Is this book for you? 3
1.4 How to use this book 4

The main chapters 4 ■ Hands-on labs 5 ■ Code
samples 5 ■ Supplementary materials 5 ■ Further
exploration 5 ■ Above and beyond 5

1.5 Setting up your lab environment 6
1.6 Installing Windows PowerShell 7
1.7 Contacting us 8
1.8 Being immediately effective with PowerShell 8

2 Meet PowerShell 9
2.1 Choose your weapon 9

The console window 11 ■ The Integrated Scripting
Environment 13

CONTENTSviii

2.2 It’s typing class all over again 15
2.3 Common points of confusion 17
2.4 What version is this? 17
2.5 Lab 18

3 Using the help system 20
3.1 The help system: how you discover commands 20
3.2 Updatable help 22
3.3 Asking for help 23
3.4 Using help to find commands 24
3.5 Interpreting the help 26

Parameter sets and common parameters 26 ■ Optional and
mandatory parameters 28 ■ Positional parameters 28
Parameter values 30 ■ Finding command examples 33

3.6 Accessing “about” topics 33
3.7 Accessing online help 34
3.8 Lab 34
3.9 Lab answers 36

4 Running commands 37
4.1 Not scripting, but running commands 37
4.2 The anatomy of a command 38
4.3 The cmdlet naming convention 39
4.4 Aliases: nicknames for commands 40
4.5 Taking shortcuts 42

Truncating parameter names 42 ■ Using parameter name
aliases 42 ■ Using positional parameters 42

4.6 Cheating a bit: Show-Command 44
4.7 Support for external commands 44
4.8 Dealing with errors 48
4.9 Common points of confusion 49

Typing cmdlet names 49 ■ Typing parameters 49

4.10 Lab 50

5 Working with providers 51
5.1 What are providers? 51

CONTENTS ix

5.2 Understanding how the filesystem is organized 53
5.3 Understanding how the filesystem is like other data

stores 55
5.4 Navigating the filesystem 55
5.5 Using wildcards and literal paths 57
5.6 Working with other providers 58
5.7 Lab 61
5.8 Further exploration 62
5.9 Lab answers 62

6 The pipeline: connecting commands 63
6.1 Connecting one command to another: less work for

you 63
6.2 Exporting to a CSV or an XML file 64

Exporting to CSV 65 ■ Exporting to XML 66
Comparing files 67

6.3 Piping to a file or a printer 69
6.4 Converting to HTML 70
6.5 Using cmdlets that modify the system: killing processes

and stopping services 71
6.6 Common points of confusion 72
6.7 Lab 74
6.8 Lab answers 75

7 Adding commands 76
7.1 How one shell can do everything 76
7.2 About product-specific “management shells” 77
7.3 Extensions: finding and adding snap-ins 78
7.4 Extensions: finding and adding modules 80
7.5 Command conflicts and removing extensions 82
7.6 On non-Windows operating systems 83
7.7 Playing with a new module 83
7.8 Profile scripts: preloading extensions when the shell

starts 85
7.9 Getting modules from the internet 86

7.10 Common points of confusion 87

CONTENTSx

7.11 Lab 87
7.12 Lab answers 88

8 Objects: data by another name 89
8.1 What are objects? 89
8.2 Understanding why PowerShell uses objects 90
8.3 Discovering objects: Get-Member 92
8.4 Using object attributes, or properties 94
8.5 Using object actions, or methods 94
8.6 Sorting objects 95
8.7 Selecting the properties you want 96
8.8 Objects until the end 97
8.9 Common points of confusion 99

8.10 Lab 99
8.11 Lab answers 100

9 The pipeline, deeper 101
9.1 The pipeline: enabling power with less typing 101
9.2 How PowerShell passes data down the pipeline 101
9.3 Plan A: pipeline input ByValue 102
9.4 Plan B: pipeline input ByPropertyName 106
9.5 When things don’t line up: custom properties 111
9.6 Parenthetical commands 114
9.7 Extracting the value from a single property 115
9.8 Lab 121
9.9 Further exploration 122

9.10 Lab answers 122

10 Formatting—and why it’s done on the right 123
10.1 Formatting: making what you see prettier 123
10.2 Working with the default formatting 124
10.3 Formatting tables 127
10.4 Formatting lists 128
10.5 Formatting wide lists 129
10.6 Creating custom columns and list entries 130

CONTENTS xi

10.7 Going out: to a file, a printer, or the host 133
10.8 Another out: GridViews 133
10.9 Common points of confusion 133

Always format right 133 ■ One type of object at a time,
please 135

10.10 Lab 137
10.11 Further exploration 137
10.12 Lab answers 138

11 Filtering and comparisons 139
11.1 Making the shell give you just what you need 139
11.2 Filtering left 140
11.3 Using comparison operators 140
11.4 Filtering objects out of the pipeline 142
11.5 Using the iterative command-line model 144
11.6 Common points of confusion 145

Filter left, please 145 ■ When $_ is allowed 146

11.7 Lab 146
11.8 Further exploration 147
11.9 Lab answers 147

12 A practical interlude 148
12.1 Defining the task 148
12.2 Finding the commands 148
12.3 Learning to use the commands 150
12.4 Tips for teaching yourself 151
12.5 Lab 152
12.6 Lab answer 152

13 Remote control: one-to-one, and one-to-many 153
13.1 The idea behind remote PowerShell 154
13.2 WinRM overview 155
13.3 Using Enter-PSSession and Exit-PSSession for one-to-one

remoting 159
13.4 Using Invoke-Command for one-to-many remoting 161

CONTENTSxii

13.5 Differences between remote and local commands 163
Invoke-Command vs. -computerName 164 ■ Local vs.
remote processing 165 ■ Deserialized objects 166

13.6 But wait, there’s more 167
13.7 Remote options 168
13.8 Common points of confusion 168
13.9 Lab 169

13.10 Further exploration 170
13.11 Lab answers 170

14 Using Windows Management Instrumentation and CIM 171
14.1 WMI essentials 172
14.2 The bad news about WMI 173
14.3 Exploring WMI 174
14.4 Choose your weapon: WMI or CIM 177
14.5 Using Get-WmiObject 178
14.6 Using Get-CimInstance 182
14.7 WMI documentation 182
14.8 Common points of confusion 182
14.9 Lab 183

14.10 Further exploration 184
14.11 Lab answers 184

15 Multitasking with background jobs 185
15.1 Making PowerShell do multiple things at the same

time 185
15.2 Synchronous vs. asynchronous 186
15.3 Creating a local job 187
15.4 WMI, as a job 188
15.5 Remoting, as a job 189
15.6 Getting job results 189
15.7 Working with child jobs 192
15.8 Commands for managing jobs 194
15.9 Scheduled jobs 196

15.10 Common points of confusion 197

CONTENTS xiii

15.11 Lab 198
15.12 Lab answers 199

16 Working with many objects, one at a time 200
16.1 Automation for mass management 200
16.2 The preferred way: “batch” cmdlets 201
16.3 The CIM/WMI way: invoking methods 202
16.4 The backup plan: enumerating objects 206
16.5 Common points of confusion 211

Which way is the right way? 211 ■ WMI methods vs.
cmdlets 212 ■ Method documentation 213
ForEach-Object confusion 213

16.6 Lab 214
16.7 Lab answers 214

17 Security alert! 216
17.1 Keeping the shell secure 216
17.2 Windows PowerShell security goals 217
17.3 Execution policy and code signing 218

Execution policy settings 218 ■ Digital code signing 222

17.4 Other security measures 225
17.5 Other security holes? 225
17.6 Security recommendations 226
17.7 Lab 227

18 Variables: a place to store your stuff 228
18.1 Introduction to variables 228
18.2 Storing values in variables 229
18.3 Using variables: fun tricks with quotes 231
18.4 Storing many objects in a variable 233

Working with single objects in a variable 234 ■ Working with
multiple objects in a variable 235 ■ Other ways to work with
multiple objects 236 ■ Unrolling properties and methods in
PowerShell v3 237

18.5 More tricks with double quotes 237
18.6 Declaring a variable’s type 239

CONTENTSxiv

18.7 Commands for working with variables 241
18.8 Variable best practices 242
18.9 Common points of confusion 242

18.10 Lab 242
18.11 Further exploration 243
18.12 Lab answer 243

19 Input and output 244
19.1 Prompting for, and displaying, information 244
19.2 Read-Host 245
19.3 Write-Host 248
19.4 Write-Output 249
19.5 Other ways to write 251
19.6 Lab 252
19.7 Further exploration 252
19.8 Lab answers 252

20 Sessions: remote control with less work 253
20.1 Making PowerShell remoting a bit easier 253
20.2 Creating and using reusable sessions 254
20.3 Using sessions with Enter-PSSession 255
20.4 Using sessions with Invoke-Command 257
20.5 Implicit remoting: importing a session 258
20.6 Using disconnected sessions 260
20.7 Lab 261
20.8 Further exploration 262
20.9 Lab answers 262

21 You call this scripting? 263
21.1 Not programming, more like batch files 263
21.2 Making commands repeatable 264
21.3 Parameterizing commands 265
21.4 Creating a parameterized script 267
21.5 Documenting your script 268
21.6 One script, one pipeline 270

CONTENTS xv

21.7 A quick look at scope 273
21.8 Lab 274
21.9 Lab answer 275

22 Improving your parameterized script 276
22.1 Starting point 276
22.2 Getting PowerShell to do the hard work 277
22.3 Making parameters mandatory 278
22.4 Adding parameter aliases 280
22.5 Validating parameter input 281
22.6 Adding the warm and fuzzies with verbose output 282
22.7 Lab 284
22.8 Lab answer 284

23 Advanced remoting configuration 286
23.1 Using other endpoints 286
23.2 Creating custom endpoints 287

Creating the session configuration 288
Registering the session 289

23.3 Enabling multihop remoting 291
23.4 Digging deeper into remoting authentication 292

Defaults for mutual authentication 292 ■ Mutual
authentication via SSL 293 ■ Mutual authentication
via TrustedHosts 293

23.5 Lab 294
23.6 Lab answer 295

24 Using regular expressions to parse text files 296
24.1 The purpose of regular expressions 297
24.2 A regex syntax primer 297
24.3 Using regex with -Match 299
24.4 Using regex with Select-String 299
24.5 Lab 301
24.6 Further exploration 301
24.7 Lab answers 302

CONTENTSxvi

25 Additional random tips, tricks, and techniques 303
25.1 Profiles, prompts, and colors: customizing the shell 303

PowerShell profiles 303 ■ Customizing the prompt 305
Tweaking colors 306

25.2 Operators: -as, -is, -replace, -join, -split, -in, -contains 307
-as and -is 307 ■ -replace 308 ■ -join and -split 308
-contains and -in 309

25.3 String manipulation 310
25.4 Date manipulation 311
25.5 Dealing with WMI dates 312
25.6 Setting default parameter values 313
25.7 Playing with script blocks 315
25.8 More tips, tricks, and techniques 315

26 Using someone else’s script 316
26.1 The script 317
26.2 It’s a line-by-line examination 321
26.3 Lab 321
26.4 Lab answer 323

27 Never the end 325
27.1 Ideas for further exploration 325
27.2 “Now that I’ve read the book, where do I start?” 326
27.3 Other resources you’ll grow to love 327

28 PowerShell cheat sheet 328
28.1 Punctuation 328
28.2 Help file 331
28.3 Operators 332
28.4 Custom property and column syntax 332
28.5 Pipeline parameter input 333
28.6 When to use $_ 334

appendix Review labs 335

index 347

xvii

preface
We’ve been teaching and writing about Windows PowerShell for a long time. When
Don began contemplating the first edition of this book, he realized that most Power-
Shell writers and teachers—including himself—were forcing our students to approach
the shell as a kind of programming language. Most PowerShell books are into “script-
ing” by the third or fourth chapter, yet more and more PowerShell students were
backing away from that programming-oriented approach. Those students wanted to
use the shell as a shell, at least at first, and we weren’t delivering a learning experience
that matched that desire.

 So he decided to take a swing at it. A blog post on the Windows IT Pro website pro-
posed a table of contents for this book, and ample feedback from the blog’s readers
fine-tuned it into the book you’re about to read. He wanted to keep each chapter
short, focused, and easy to cover in a short period of time—because we know adminis-
trators don’t have a lot of free time and often have to learn on the fly. When Power-
Shell v3 came out, it was obviously a good time to update the book, and Don turned to
Jeffery Hicks, a long-time collaborator and fellow MVP, to help out.

 We both wanted a book that would focus on PowerShell itself, and not on the myr-
iad technologies that PowerShell touches, like Exchange Server, SQL Server, System
Center, and so on. We feel that by learning to use the shell properly, you can teach
yourself to administer all of those “PowerShell-ed” server products. So this book
focuses on the core of using PowerShell. Even if you’re also using a “cookbook” style
of book that provides ready-to-use answers for specific administrative tasks, this book
will help you understand what those examples are doing. That understanding will
make it easier to modify those examples for other purposes, and eventually to con-
struct your own commands and scripts from scratch.

PREFACExviii

 We hope this book won’t be the only PowerShell education that you pursue. We’ve
also co-authored Learn PowerShell Toolmaking in a Month of Lunches, which offers the
same day-at-a-time approach to learning PowerShell’s scripting and tool-creation capa-
bilities. You can also find videos we’ve produced on YouTube and read articles we’ve
authored for sites such as the Petri IT Knowledgebase and Windows IT Pro, not to
mention take courses from Pluralsight.

 If you need any further help, we encourage you to log on to www.PowerShell.org.
We both answer questions in several of the discussion forums there, and we’d be
happy to try to get you out of whatever you’re stuck on. The site is also a great portal
into the robust and active PowerShell community; you can learn about free e-books,
the in-person PowerShell and DevOps Summit, and all of the regional and local user
groups and PowerShell-related events that happen throughout the year. Get
involved—it’s a great way to make PowerShell a more powerful part of your career.

 Enjoy—and good luck with the shell.

xix

acknowledgments
Books don’t write, edit, and publish themselves. Don would like to thank everyone at
Manning Publications who decided to take a chance on a different kind of book for
Windows PowerShell, and who worked so hard to make the first edition of this book
happen. Jeff would like to thank Don for inviting him along for the ride, and the
PowerShell community for their enthusiasm and support. Don and Jeff are both grate-
ful to Manning for allowing them to continue the “Month of Lunches” series with this
third edition.

 Thanks also to the following peer reviewers who read the manuscript during its
development and provided feedback: Bennett Scharf, Dave Pawson, David Moravec,
Keith Hill, and Rajesh Attaluri. In addition, Erika Bricker, Gerald Mack, Henry Phil-
lips, Hugo Durana, Joseph Tingsanchali, Noreen Dertinger, Olivier Deveault, Stefan
Hellweger, Steven Presley, and Tiklu Ganguly provided valuable comments.

 Finally, thanks also to James Berkenbile and Trent Whiteley for their technical
review of the manuscript and code during production.

xx

about this book
Most of what you need to know about this book is covered in chapter 1, but there are
a few things that we should mention up front.

 First of all, if you plan to follow along with our examples and complete the hands-
on exercises, you’ll need a virtual machine or computer running Windows 8.1 or Win-
dows Server 2012, or later. We cover that in more detail in chapter 1. You can get by
with Windows 7, but you’ll miss out on a few of the hands-on labs.

 Second, be prepared to read this book from start to finish, covering each chapter in
order. Again, this is something we explain in more detail in chapter 1, but the idea is
that each chapter introduces a few new things that you’ll need in subsequent chapters.
You shouldn’t try to push through the whole book—stick with the one chapter per day
approach. The human brain can absorb only so much information at once, and by tak-
ing on PowerShell in small chunks, you’ll learn it a lot faster and more thoroughly.

 Third, this book contains a lot of code snippets. Most of them are short, so you
should be able to type them easily. In fact, we recommend that you do type them,
because doing so will help reinforce an essential PowerShell skill: accurate typing!
Longer code snippets are given in listings and are available for download from the
book’s page on the publisher’s website at https://www.manning.com/books/learn-
windows-powershell-in-a-month-of-lunches-third-edition.

 That said, you should be aware of a few conventions. Code always appears in a spe-
cial font, just as in this example:

Get-WmiObject –class Win32_OperatingSystem

➥–computerName SERVER-R2

That example also illustrates the line-continuation character used in this book. It indi-
cates that those two lines should be typed as a single line in PowerShell. In other

https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition
https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition

ABOUT THIS BOOK xxi

words, don’t hit Enter or Return after Win32_OperatingSystem—keep right on typ-
ing. PowerShell allows for long lines, but the pages of this book can hold only so
much.

 Sometimes you’ll also see that code font within the text itself, such as when we
write Get-Command. That just lets you know that you’re looking at a command, param-
eter, or other element that you would type within the shell.

 Fourth is a tricky topic that we’ll bring up again in several chapters: the backtick
character (`). Here’s an example:

Invoke-Command –scriptblock { Dir } `
-computerName SERVER-R2,localhost

The character at the end of the first line isn’t a stray bit of ink—it’s a real character
that you would type. On a U.S. keyboard, the backtick (or grave accent) is usually near
the upper left, under the Esc key, on the same key as the tilde character (~). When
you see the backtick in a code listing, type it exactly as is. Furthermore, when it
appears at the end of a line—as in the preceding example—make sure that it’s the last
character on that line. If you allow any spaces or tabs to appear after it, the backtick
won’t work correctly, and neither will the code example.

 Finally, we’ll occasionally direct you to internet resources. Where those URLs are
particularly long and difficult to type, we’ve replaced them with Manning-based short-
ened URLs that look like http://mng.bz/S085 (you’ll see that one in chapter 1).

Author Online

The purchase of Learn Windows PowerShell in a Month of Lunches, Third Edition includes
access to a private forum run by Manning Publications where you can make comments
about the book, ask technical questions, and receive help from the authors and other
users. To access and subscribe to the forum, point your browser to https://www.manning
.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition and click
the Author Online link. This page provides information on how to get on the forum
after you’re registered, the kind of help that’s available, and the rules of conduct in the
forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://mng.bz/S085
https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition
https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition
https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition

xxii

about the authors
DON JONES is a multiple-year recipient of Microsoft’s prestigious Most Valuable Profes-
sional (MVP) Award for his work with Windows PowerShell. For five years he wrote the
Windows PowerShell column for Microsoft TechNet Magazine. He currently blogs at
http://PowerShell.org and authors the “Decision Maker” column and blog for Red-
mond Magazine. Don is a prolific technology author and has published more than a
dozen print books since 2001. He’s now a curriculum director for IT Ops content at
Pluralsight, an online video training platform. Don’s first Windows scripting language
was KiXtart, going back all the way to the mid-1990s. He quickly graduated to VBScript
in 1995 and was one of the first IT pros to start using early releases of a new Microsoft
product code-named Monad—which later became Windows PowerShell. Don lives in
Las Vegas and, when it gets too hot there, near Duck Creek Village in Utah.

JEFFERY HICKS is an IT veteran with more than 25 years of experience, much of it spent
as an IT infrastructure consultant specializing in Microsoft server technologies with an
emphasis in automation and efficiency. He is a multiyear recipient of the Microsoft
MVP Award in Windows PowerShell. He works today as an independent author,
trainer, and consultant. He has taught and presented on PowerShell and the benefits
of automation to IT pros all over the world. Jeff has written for numerous online sites
and print publications, is a contributing editor at Petri IT Knowledgebase, a Plural-
sight author, and a frequent speaker at technology conferences and user groups. You
can keep up with Jeff at his blog, http://jdhitsolutions.com/blog, and on Twitter
(@JeffHicks).

http://jdhitsolutions.com/blog
http://PowerShell.org

1

Before you begin

We’ve been teaching Windows PowerShell since version 1 was released in 2006. Back
then, most of the folks using the shell were experienced VBScript users, and they were
eager to apply their VBScript skills to learning PowerShell. As a result, we and the
other folks who taught the shell, wrote books and articles, and so forth, all adopted a
teaching style that takes advantage of prior programming or scripting skills.

 But since late 2009, a shift has occurred. More and more administrators who
don’t have prior VBScript experience have started trying to learn the shell. All of a
sudden, our old teaching patterns didn’t work as well, because we had focused on
scripting and programming. That’s when we realized that PowerShell isn’t a script-
ing language. It’s a command-line shell where you run command-line utilities. Like
all good shells, it has scripting capabilities, but you don’t have to use them, and you
certainly don’t have to start with them. We started changing our teaching patterns,
beginning with the many conferences we speak at each year. Don also implemented
these changes into his instructor-led training courseware.

 This book is the result of that process, and it’s the best that we’ve yet devised to
teach PowerShell to someone who might not have a scripting background
(although it certainly doesn’t hurt if you do). But before we jump into the instruc-
tion, let’s set the stage for you.

1.1 Why you can’t afford to ignore PowerShell
Batch. KiXtart. VBScript. Let’s face it, Windows PowerShell isn’t exactly Microsoft’s
(or anyone else’s) first effort at providing automation capabilities to Windows
administrators. We think it’s valuable to understand why you should care about
PowerShell, because when you do, you’ll feel comfortable that the time you commit

2 CHAPTER 1 Before you begin

to learning PowerShell will pay off. Let’s start by considering what life was like before
PowerShell came along, and look at some of the advantages of using this shell.

1.1.1 Life without PowerShell

Windows administrators have always been happy to click around in the graphical user
interface (GUI) to accomplish their chores. After all, the GUI is largely the whole
point of Windows—the operating system isn’t called Text, after all. GUIs are great
because they enable you to discover what you can do. Don remembers the first time
he opened Active Directory Users and Computers. He hovered over icons and read
tooltips, pulled down menus, and right-clicked things, all to see what was available.
GUIs make learning a tool easier. Unfortunately, GUIs have zero return on that invest-
ment. If it takes you five minutes to create a new user in Active Directory (and assum-
ing you’re filling in a lot of the fields, that’s a reasonable estimate), you’ll never get
any faster than that. One hundred users will take five hundred minutes—there’s no
way, short of learning to type and click faster, to make the process go any quicker.

 Microsoft has tried to deal with that problem a bit haphazardly, and VBScript was
probably its most successful attempt. It might have taken you an hour to write a
VBScript that could import new users from a CSV file, but after you’d invested that
hour, creating users in the future would take only a few seconds. The problem with
VBScript is that Microsoft didn’t make a wholehearted effort in supporting it. Micro-
soft had to remember to make things VBScript accessible, and when developers forgot
(or didn’t have time), you were stuck. Want to change the IP address of a network
adapter by using VBScript? OK, you can. Want to check its link speed? You can’t,
because nobody remembered to hook that up in a way that VBScript could get to.
Sorry. Jeffrey Snover, the architect of Windows PowerShell, calls this the last mile. You
can do a lot with VBScript (and other, similar technologies), but it tends to let you
down at some point, never getting you through that last mile to the finish line.

 Windows PowerShell is an express attempt on Microsoft’s part to do a better job
and to get you through the last mile. And it’s been a successful attempt so far. Dozens
of product groups within Microsoft have adopted PowerShell, an extensive ecosystem
of third parties depend on it, and a global community of experts and enthusiasts are
pushing the PowerShell envelope every day.

1.1.2 Life with PowerShell

Microsoft’s goal for Windows PowerShell is to build 100% of a product’s administra-
tive functionality in the shell. Microsoft continues to build GUI consoles, but those
consoles are executing PowerShell commands behind the scenes. That approach
forces the company to make sure that every possible thing you can do with the prod-
uct is accessible through the shell. If you need to automate a repetitive task or create a
process that the GUI doesn’t enable well, you can drop into the shell and take full con-
trol for yourself.

3Is this book for you?

 Several Microsoft products have already adopted this approach, including
Exchange Server 2007 and beyond, SharePoint Server 2010 and later, many of the Sys-
tem Center products, Office 365, and many components of Windows itself. Going for-
ward, more and more products and Windows components will follow this pattern.
Windows Server 2012, which was where PowerShell v3 was introduced, is almost com-
pletely managed from PowerShell—or by a GUI sitting atop PowerShell. That’s why
you can’t afford to ignore PowerShell: Over the next few years, it’ll become the basis
for more and more administration. It’s already become the foundation for numerous
higher-level technologies, including Desired State Configuration (DSC), PowerShell
Workflow, and much more. PowerShell is everywhere!

 Ask yourself this question: If you were in charge of a team of IT administrators
(and perhaps you are), who would you want in your senior, higher-paying positions?
Administrators who need several minutes to click their way through a GUI each time
they need to perform a task, or ones who can perform tasks in a few seconds after
automating them? We already know the answer from almost every other part of the IT
world. Ask a Cisco administrator, or an AS/400 operator, or a UNIX administrator.
The answer is, “I’d rather have the person who can run things more efficiently from
the command line.” Going forward, the Windows world will start to split into two
groups: administrators who can use PowerShell, and those who can’t. As Don famously
said at Microsoft’s TechEd 2010 conference, “Your choice is learn PowerShell, or would
you like fries with that?”

 We’re glad you’ve decided to learn PowerShell.

1.2 And now, it’s just “PowerShell”
In mid-2016, Microsoft took the previously unthinkable step of open sourcing all of
Windows PowerShell. At the same time, it released versions of PowerShell—without
the Windows attached—for macOS and numerous Linux builds. Amazing! Now, the
same object-centric shell is available on many operating systems, and can be evolved
and improved by a worldwide community. So for this edition of the book, we decided
to make sure we addressed PowerShell on something other than Windows. We still
feel that PowerShell’s biggest audience will be Windows users, but we also want to
make sure you understand how it works on other operating systems.

1.3 Is this book for you?
This book doesn’t try to be all things to all people. Microsoft’s PowerShell team
loosely defines three audiences who use PowerShell:

 Administrators who primarily run commands and consume tools written by
others

 Administrators who combine commands and tools into more-complex pro-
cesses, and perhaps package those as tools that less-experienced administrators
can use

 Administrators and developers who create reusable tools and applications

http://msdn.microsoft.com/powershell

4 CHAPTER 1 Before you begin

This book is designed primarily for the first audience. We think it’s valuable for any-
one, even a developer, to understand how the shell is used to run commands. After all,
if you’re going to create your own tools and commands, you should know the patterns
that the shell uses, as they allow you to make tools and commands that work as well as
they can within the shell.

 If you’re interested in creating scripts to automate complex processes, such as new
user provisioning, then you’ll see how to do that by the end of this book. You’ll even
see how to get started on creating your own commands that other administrators can
use. But this book won’t probe the depths of everything that PowerShell can possibly
do. Our goal is to get you using the shell and being effective with it in a production
environment.

 We’ll also show you a couple of ways to use PowerShell to connect to external man-
agement technologies; Windows Management Instrumentation (WMI) and regular
expressions are the two examples that come quickly to mind. For the most part, we’re
going to introduce only those technologies and focus on how PowerShell connects to
them. Those topics deserve their own books (and have them—we’ll provide recom-
mendations when we get there), so we concentrate solely on the PowerShell side of
things. We’ll provide suggestions for further exploration if you’d like to pursue those
technologies on your own. In short, this book isn’t meant to be the last thing you use
to learn about PowerShell, but instead is designed to be a great first step.

1.4 How to use this book
The idea behind this book is that you’ll read one chapter each day. You don’t have to
read it during lunch, but each chapter should take you only about 40 minutes to read,
giving you an extra 20 minutes to gobble down the rest of your sandwich and practice
what the chapter showed you.

1.4.1 The main chapters

Of the chapters in this book, chapters 2 through 25 contain the main content, giving
you 24 days’ worth of lunches to look forward to. You can expect to complete the main
content of the book in about a month. Try to stick with that schedule as much as pos-
sible, and don’t feel the need to read extra chapters in a given day. It’s more import-
ant that you spend some time practicing what each chapter shows you, because using
the shell will help cement what you’ve learned. Not every chapter requires a full hour,
so sometimes you’ll be able to spend additional time practicing (and eating lunch)
before you have to get back to work. We find that a lot of people learn more quickly
when they stick with just one chapter a day, because it gives your brain time to mull
over the new ideas, and gives you time to practice them on your own. Don’t rush it,
and you may find yourself moving more quickly than you thought possible.

5How to use this book

1.4.2 Hands-on labs

Most of the main content chapters include a short lab for you to complete. You’ll be
given instructions, and perhaps a hint or two. The answers for these labs appear at the
end of each chapter. But try your best to complete each lab without looking at the
answers.

1.4.3 Code samples

Throughout the book, you’ll encounter code listings. These are longer PowerShell
examples. But don’t feel you need to copy them. If you head to www.manning.com
and find the page for this book, you’ll see a link to download all of the code listings.

1.4.4 Supplementary materials

Don’s YouTube channel, YouTube.com/PowerShellDon, contains a bunch of free vid-
eos that he made for the original edition of this book—and they’re all still 100% appli-
cable. They’re a great way to get some short, quick demos. He also hosts videos from
recorded conference workshops and more, and they’re all worth a look. We also sug-
gest the PowerShell.org channel, YouTube.com/powershellorg, which contains a ton
of video content. You’ll find recorded sessions from the PowerShell + DevOps Global
Summit events, online community webinars, and a lot more. All free!

 Jeff does a lot of writing for the Petri IT Knowledgebase (www.petri.com), where
you’ll find a huge collection of content covering all sorts of PowerShell topics. You
might also see whether Jeff has anything new on his YouTube channel, http://
YouTube.com/jdhitsolutions.

1.4.5 Further exploration

A few chapters in this book only skim the surface of some cool technologies, and we
end those chapters with suggestions for exploring those technologies on your own.
We point out additional resources, including free stuff that you can use to expand
your skill set as the need arises.

1.4.6 Above and beyond

As we learned PowerShell, we often wanted to go off on a tangent and explore why
something worked the way it did. We didn’t learn a lot of extra practical skills that way,
but we did gain a deeper understanding of what the shell is and how it works. We’ve
included some of that tangential information throughout the book in sections labeled
“Above and beyond.” None of those will take you more than a couple of minutes or so
to read, but if you’re the type of person who likes to know why something works the
way it does, they can provide some fun additional facts. If you feel those sections
might distract you from the practical stuff, ignore them on your first read-through.
You can always come back and explore them later, after you’ve mastered the chapter’s
main material.

http://YouTube.com/jdhitsolutions
http://YouTube.com/jdhitsolutions
http://YouTube.com/jdhitsolutions
http://YouTube.com/PowerShellDon
http://PowerShell.org
http://YouTube.com/powershellorg

6 CHAPTER 1 Before you begin

1.5 Setting up your lab environment
You’re going to be doing a lot of practicing in Windows PowerShell throughout this
book, and you’ll want to have a lab environment to work in; please don’t practice in
your company’s production environment.

 All you’ll need to run most of the examples in this book—and to complete all of
the labs—is a copy of Windows that has PowerShell v3 or later installed. We suggest
Windows 8.1 or later, or Windows Server 2012 R2 or later, which both come with
PowerShell v4. Note that PowerShell might not exist on certain editions of Windows,
such as Starter editions. If you’re going to play with PowerShell, you’ll have to invest in
a version of Windows that has it. Also note that some of the labs rely on functionality
that was new in Windows 8 and Windows Server 2012, so if you’re using something
older, things might work differently. At the start of each lab, we tell you what operat-
ing system you need in order to complete the lab.

 Keep in mind that, throughout this book, we’re assuming you’ll be working on a
64-bit operating system, also referred to as an x64 operating system. As such, it comes
with two copies of Windows PowerShell and the graphically-oriented Windows Power-
Shell Integrated Scripting Environment (ISE). In the Start menu (or, in Windows 8,
the Start screen), the 64-bit versions of these are listed as Windows PowerShell and Win-
dows PowerShell ISE. The 32-bit versions are identified by an (x86) in the shortcut name,
and you’ll also see (x86) in the window’s title bar when running those versions. If
you’re on a 32-bit operating system, you’ll have only the 32-bit version of PowerShell,
and it won’t specifically say (x86).

 The examples in this book are based on the 64-bit versions of PowerShell and the
ISE. If you’re not using those, you may sometimes get slightly different results than
ours when running examples, and a few of the labs might not work properly. The 32-
bit versions are primarily provided for backward compatibility. For example, some
shell extensions are available only in 32-bit flavors and can be loaded into only the 32-
bit (or x86) shell. Unless you need to use such an extension, we recommend using the
64-bit shell when you’re on a 64-bit operating system. Microsoft’s investments going
forward are primarily in 64-bit; if you’re stuck with a 32-bit operating system, unfortu-
nately that’s going to hold you back.

TIP You should be able to accomplish everything in this book with a single
computer running PowerShell, although some stuff gets more interesting if
you have two or three computers, all in the same domain, to play with. We’ve
used CloudShare (www.cloudshare.com) as an inexpensive way to spin up sev-
eral virtual machines in the cloud. If such a scenario interests you, look into
that service or something like it. Note that CloudShare isn’t available in all
countries. Another possibility if you’re running Windows 8 or later is to use
the Hyper-V feature and run a few virtual machines there.

If you’re using a non-Windows build of PowerShell, you’ll have fewer options to worry
about. Just get the right build for your version of macOS or Linux (or whatever) from

7Installing Windows PowerShell

http://github.com/PowerShell/PowerShell, and you should be good to go. Keep in
mind, however, that a lot of the functionality we’ll be using in our examples is unique
to Windows. For example, you can’t get a list of services on Linux, because Linux
doesn’t have services (it has daemons, which are similar, but different).

1.6 Installing Windows PowerShell
Windows PowerShell v3 has been available for most versions of Windows since the
release of Windows Server 2008, Windows Server 2008 R2, Windows 7, and later ver-
sions. Windows Vista isn’t supported, but it can still run v2. The shell is preinstalled
only on the most recent versions of Windows; it must be manually installed on older
versions. PowerShell v4 is available for Windows 7 and later and Windows Server 2008
R2 or later, although those versions of Windows don’t have as many components that
are “hooked up” to PowerShell, which is why we recommend Windows 8 or Windows
Server 2012 as minimum versions. And although PowerShell v4 isn’t the latest version
of the shell, that or anything later will suffice for this book’s content.

TIP You should check your version of PowerShell: Open the PowerShell con-
sole, type $PSVersionTable, and hit Enter. If you get an error, or if the out-
put doesn’t indicate PSVersion 4.0, then you don’t have PowerShell v4.

If you want to check the latest available version of PowerShell or download it, go to
http://msdn.microsoft.com/powershell. This official PowerShell home page has links
to the latest Windows Management Framework (WMF) installer, which is what installs
PowerShell and its related technologies. Again, because this book is covering entry-
level stuff, you’ll find that not much has changed from v3, but it’s always fun to have
the latest version to play with.

 PowerShell has two application components: the standard, text-based console host
(PowerShell.exe) and the more visual ISE (PowerShell_ISE.exe). We use the text-based
console most of the time, but you’re welcome to use the ISE if you prefer.

NOTE The PowerShell ISE isn’t preinstalled on server operating systems. If
you want to use it, you’ll need to go into Windows Features (using Server
Manager) and manually add the ISE feature (you can also open the Power-
Shell console and run Add-WindowsFeature powershell-ise). The ISE isn’t
available at all on server installations that don’t have the full GUI (for exam-
ple, Server Core or Nano Server).

Before you go any further, take a few minutes to customize the shell. If you’re using
the text-based console host, we strongly recommend that you change the default con-
sole font to the Lucida fixed-width font. The default font makes it difficult to distin-
guish some of the special punctuation characters that PowerShell uses. Follow these
steps to customize the font:

1 Click the control box (that’s the PowerShell icon in the upper left of the con-
sole window) and select Properties from the menu.

http://github.com/PowerShell/PowerShell
http://msdn.microsoft.com/powershell

8 CHAPTER 1 Before you begin

2 In the dialog box that appears, browse through the various tabs to change the
font, window colors, window size and position, and so forth.

TIP We strongly recommend you make sure that both the Window Size and
Screen Buffer have the same Width values.

Your changes will apply to the default console, meaning they’ll stick around when you
open new windows. Of course, all of this applies only to Windows: On non-Windows
operating systems, you’ll usually install PowerShell, open your operating system’s
command-line (for example, a Bash shell), and run powershell. Your console window
will determine your colors, screen layout, and so on, so adjust to suit your preferences.

1.7 Contacting us
We’re passionate about helping folks like you learn Windows PowerShell, and we try to
provide as many resources as we can. We also appreciate your feedback, because that
helps us come up with ideas for new resources that we can add to the site, and ways to
improve future editions of this book. You can reach Don on Twitter @concentratedDon,
or Jeff @JeffHicks. We also both hang out in the forums of http://PowerShell.org if you
have PowerShell questions. http://PowerShell.org is also a wonderful place for more
resources, including free e-books, an in-person annual conference, free webinars, and
tons more. We help run the organization, and we can’t recommend it highly enough as
a place to continue your PowerShell education after you’ve finished this book.

1.8 Being immediately effective with PowerShell
Immediately effective is a phrase we’ve made our primary goal for this entire book. As
much as possible, each chapter focuses on something that you could use in a real pro-
duction environment, right away. That means we sometimes gloss over some details in
the beginning, but when necessary we promise to circle back and cover those details at
the right time. In many cases, we had to choose between hitting you with 20 pages of
theory first, or diving right in and accomplishing something without explaining all the
nuances, caveats, and details. When those choices came along, we almost always chose
to dive right in, with the goal of making you immediately effective. But all of those
important details and nuances are still explained later in the book.

 OK, that’s enough background. It’s time to start being immediately effective. Your
first lunch lesson awaits.

http://PowerShell.org
http://PowerShell.org

9

Meet PowerShell

This chapter is all about getting you situated and helping you to decide which
PowerShell interface you’ll use (yes, you have a choice). If you’ve used PowerShell
before, this material might seem redundant, so feel free to skim this chapter—you
might still find some tidbits here and there that’ll help you down the line.

 Also, this chapter applies exclusively to PowerShell on Windows. Non-Windows
versions don’t come in as many options or flavors, so if that’s your situation, you
can skip this chapter.

2.1 Choose your weapon
On Windows, Microsoft provides two ways (four, if you’re being picky) for you to
work with PowerShell. Figure 2.1 shows the Start screen’s Apps page, with four
PowerShell icons. We’ve highlighted them to help you spot them more easily.

TIP On older versions of Windows, these icons are on your Start menu.
You point to All Programs > Accessories > Windows PowerShell to find the
icons. You can also select Run from the Start menu, type PowerShell.exe,
and hit Enter to open the PowerShell console application. On Windows 8
and Windows Server 2012 or later, hold the Windows key on your keyboard
and press R to get the Run dialog box. Or press and release the Windows
key, and start typing powershell to quickly get to the PowerShell icons.

On a 32-bit operating system, you have only two (at most) PowerShell icons; on a
64-bit system, you have up to four. These include

